持续学习系统将知识从先前看到的任务转移以最大程度地提高新任务的能力是该领域的重大挑战,从而限制了持续学习解决方案对现实情况的适用性。因此,本研究旨在扩大我们在不断加强学习的特定情况下对转移及其驱动力的理解。我们采用SAC作为基础RL算法和持续的世界作为连续控制任务的套件。我们系统地研究SAC(演员和评论家,勘探和数据)的不同组成部分如何影响转移功效,并提供有关各种建模选项的建议。在最近的连续世界基准中评估了最佳的选择,即称为clonex-sac。 Clonex-SAC获得了87%的最终成功率,而Packnet的80%是基准中的最佳方法。此外,根据连续世界提供的指标,转移从0.18增至0.54。
translated by 谷歌翻译
深度神经网络是当今离线增强学习中最常用的功能近似值。先前的工作表明,接受TD学习和梯度下降训练的神经网可以表现出隐式正则化,可以通过这些网络的参数化不足来表征。具体而言,已经观察到在训练期间,倒数第二个特征层的排名(也称为\ textit {有效等级})急剧崩溃。反过来,这种崩溃被认为是为了降低模型在学习后期进一步适应的能力,从而导致最终表现降低。有效等级和绩效之间的这种关联使离线RL的有效等级引人注目,主要用于离线政策评估。在这项工作中,我们对三个离线RL数据集的有效等级与绩效之间的关系进行了仔细的实证研究:Bsuite,Atari和DeepMind Lab。我们观察到,直接关联仅存在于受限的设置中,并且在更广泛的超参数扫描中消失。此外,我们从经验上确定了三个学习的阶段,这些阶段解释了隐式正则化对学习动力学的影响,并发现单独进行引导不足以解释有效等级的崩溃。此外,我们表明其他几个因素可能会混淆有效的等级与绩效之间的关系,并得出结论,在简单假设下研究这种关联可能会产生高度误导。
translated by 谷歌翻译
观察到在训练期间重新定位神经网络,以改善最近的作品中的概括。然而,它既不在深度学习实践中被广泛采用,也不经常用于最先进的培训方案中。这就提出了一个问题,即何时重新定位起作用,以及是否应与正规化技术一起使用,例如数据增强,体重衰减和学习率计划。在这项工作中,我们对标准培训的经验比较进行了广泛的经验比较,并选择了一些重新定位方法来回答这个问题,并在各种图像分类基准上培训了15,000多个模型。我们首先确定在没有任何其他正则化的情况下,这种方法对概括始终有益。但是,当与其他经过精心调整的正则化技术一起部署时,重新定位方法几乎没有给予概括,尽管最佳的概括性能对学习率和体重衰减超参数的选择不太敏感。为了研究重新定位方法对嘈杂数据的影响,我们还考虑在标签噪声下学习。令人惊讶的是,在这种情况下,即使在存在其他经过精心调整的正则化技术的情况下,重新定位也会显着改善标准培训。
translated by 谷歌翻译
尽管最近通过剩余网络的代表学习中的自我监督方法取得了进展,但它们仍然对ImageNet分类基准进行了高度的监督学习,限制了它们在性能关键设置中的适用性。在MITROVIC等人的现有理论上洞察中建立2021年,我们提出了RELICV2,其结合了明确的不变性损失,在各种适当构造的数据视图上具有对比的目标。 Relicv2在ImageNet上实现了77.1%的前1个分类准确性,使用线性评估使用Reset50架构和80.6%,具有较大的Reset型号,优于宽边缘以前的最先进的自我监督方法。最值得注意的是,RelicV2是使用一系列标准Reset架构始终如一地始终优先于类似的对比较中的监督基线的第一个表示学习方法。最后,我们表明,尽管使用Reset编码器,Relicv2可与最先进的自我监控视觉变压器相媲美。
translated by 谷歌翻译
持续学习研究的主要重点领域是通过设计新算法对分布变化更强大的新算法来减轻神经网络中的“灾难性遗忘”问题。尽管持续学习文献的最新进展令人鼓舞,但我们对神经网络的特性有助于灾难性遗忘的理解仍然有限。为了解决这个问题,我们不关注持续的学习算法,而是在这项工作中专注于模型本身,并研究神经网络体系结构对灾难性遗忘的“宽度”的影响,并表明宽度在遗忘遗产方面具有出人意料的显着影响。为了解释这种效果,我们从各个角度研究网络的学习动力学,例如梯度正交性,稀疏性和懒惰的培训制度。我们提供了与不同架构和持续学习基准之间的经验结果一致的潜在解释。
translated by 谷歌翻译
Neural networks leverage robust internal representations in order to generalise. Learning them is difficult, and often requires a large training set that covers the data distribution densely. We study a common setting where our task is not purely opaque. Indeed, very often we may have access to information about the underlying system (e.g. that observations must obey certain laws of physics) that any "tabula rasa" neural network would need to re-learn from scratch, penalising performance. We incorporate this information into a pre-trained reasoning module, and investigate its role in shaping the discovered representations in diverse self-supervised learning settings from pixels. Our approach paves the way for a new class of representation learning, grounded in algorithmic priors.
translated by 谷歌翻译
直觉上,人们所期望的训练的神经网络对测试样本进行相关预测与如何密集的该样本是由表示太空中看到的训练样本包围的准确性。在这项工作中,我们提供了理论依据和支持这一假设的实验。我们提出了一种误差函数为分段线性,需要一个局部区域中的网络的输入空间,并输出平滑经验训练误差,这是一个从平均通过网络表示距离加权其他区域经验训练误差的神经网络。甲绑定在预期平滑误差为每个区域尺度成反比地表示空间训练样本密度。根据经验,我们验证这个边界是网络的预测上测试样品不准确的一个强有力的预测。对于看不见的测试设备,包括那些外的分布样本,通过结合当地区域的错误排名测试样品和最高界限丢弃样品提高了20%的绝对数字来看,对图像分类数据集的预测精度。
translated by 谷歌翻译
We introduce a conceptually simple and scalable framework for continual learning domains where tasks are learned sequentially. Our method is constant in the number of parameters and is designed to preserve performance on previously encountered tasks while accelerating learning progress on subsequent problems. This is achieved by training a network with two components: A knowledge base, capable of solving previously encountered problems, which is connected to an active column that is employed to efficiently learn the current task. After learning a new task, the active column is distilled into the knowledge base, taking care to protect any previously acquired skills. This cycle of active learning (progression) followed by consolidation (compression) requires no architecture growth, no access to or storing of previous data or tasks, and no task-specific parameters. We demonstrate the progress & compress approach on sequential classification of handwritten alphabets as well as two reinforcement learning domains: Atari games and 3D maze navigation.
translated by 谷歌翻译
牛顿方法和Adagrad等高级优化算法受益于二阶导数或二阶统计,以实现更好的下降方向和更快的收敛速率。在他们的心中,这种算法需要计算矩阵的矩阵的反平方根或反平方根,其大小是搜索空间维度的二次。对于高维搜索空间,平方根的矩阵反转或反转变为压倒性的,进而需要近似方法。在这项工作中,我们提出了一种新的矩阵近似方法,该方法将矩阵分为块,并将每个块代表一个或两个数字。该方法允许有效地计算矩阵逆和逆平方根。我们将我们的方法应用于Adagrad,以培训深层神经网络。实验表明与对角线近似相比令人鼓舞的结果。
translated by 谷歌翻译
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.
translated by 谷歌翻译